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Abstract—In this work, we study the adaptability of well
known cryptography algorithms to energy harvesting wireless
sensor networks. We are particularly interested in algorithms
that have the ability to adapt to varying power in such networks.
Our investigations and implementation on hardware platforms
indicate that it is optimal to precompute a few key stream
bytes, store in memory and later used during the time when
the system is low on harvested power level. Our demonstrable
setup shows using a precomputed key stream can decrease the
energy consumption by 14%. We have implemented the Trivium
stream cipher for two different microcontrollers, the MSP430 and
the AVR ATmega128l and show the performance results for these
implementations. We have implemented an algorithm based on
universal hash functions to provide message authentication with
the assistance of stream ciphers. We show that this authentication
algorithm has exciting properties for energy harvesting system
and more generally for resource constrained devices.

Index Terms—Security, Energy harvesting, Cryptography,
Wireless sensor network, Stream cipher, Universal hashing,
Wegman-Carter authenticator, Trivium, Poly32, AVR, MSP430,
ATmega128.

I. MOTIVATION AND RELATED WORK

The world energy consumption reduction and the urgent

need to conserve natural resources has inspired users towards

energy usage reduction and efficiency. Perhaps homes and

buildings are one of the higher side consumers of the world

energy and an intervention to reduce this consumption has a

significant impact. This is because most energy requirements

are human presence centric. For instance, building heating

and cooling is required when humans are present. Similarly,

lighting the office, home and corridor spaces require significant

energy when humans are present. With the advent of Infor-

mation Communication Technologies and specifically wire-

less sensor network technologies (WSN), energy consumption

reduction is possible by deploying presence detection and

other sensors. For example, the home and office AC may

be powered on based on multiple parameters such as the

presence, ambient temperature and humidity. Thus, based on

movement or detecting the presence of a specific person

inside a home, several home and office appliances may be

powered on. It is estimated that nearly 4.5% of global energy

savings is possible with such Information and Communication

Technologies (ICT) with nearly 8.5% reduction in carbon-di-

oxide [1]. Every future home and office device will become a

wireless networked “smart object” with appropriately equipped

sensors possessing a short range communication capability

using devices such as IEEE 802.15.4 radio transceivers.

There are however, two major hindrances for such sensor

and communication network percolation in our daily lives.

Firstly, each of these devices need a power source such

as a battery to power the sensor node. This would also

mean that battery replacements have to be done periodically

with the risk of partitioning or shutting down the network

temporarily. It is estimated that the share of ICT in the

worldwide electricity consumption will grow further in the

foreseeable future and the present trends indicate this share

anywhere between 11% and 20% by the year 2020 [2].

Secondly, providing security in these environments becomes a

prime requirement. For example, authentication is important

in home and office environments. Similarly, confidentiality

of data is of outmost importance in health care applications

such as in-home patient monitoring. A patient’s blood pressure

and heart rate, for example could be measured by wearable

devices capable of wirelessly communicating the data to a

home computer running a pre-screening analysis software [3].

Thus with an expected thousand ICT devices per person in

2017 [4], the problem of powering these devices together

with secure communication is in itself a significant task. We

think that energy harvesting for home and office environments

sufficient to drive wireless sensor networks is a viable option.

For instance, a palm sized solar panel can already generate

sufficient energy (about 300 mW of power) under medium to

bright sunlight. Similarly, the inside room heating and outside

of buildings is a sufficient temperature difference required for

most thermoenergy generator modules. While cryptographic

algorithm complexity, strengths and vulnerabilities are well re-

searched areas, little is known in literature about their suitabil-

ity to energy harvested wireless sensor networks. Therefore,

the question that remains is about the possibility of a fully

secure communication with energy harvested sensors. This

paper addresses this key question. Our sensor nodes are driven

using solar energy simulators and our studies are restricted to

providing security under a fluctuating power source.

In the energy harvesting paradigm, the lifetime of a network

can be considered as infinite (besides hardware failures) but

the power that was considered as constant in battery powered

sensor networks can have spatio-temporal variation over the



complete network. While all existing algorithms including

cryptographic algorithms adapted to WSNs have the goal

to reduce the energy consumed and thus to maximise the

lifetime of the networks, in the paradigm of energy harvesting

sensor networks, the algorithms need to be energy-neutral

i.e., each operation needs to consume less or equal energy to

that of the energy harvested. In this context, new algorithms

have been developed for power management [5], routing [6]

and other networking operations.

Several investigations on block ciphers are reported for

wireless sensor networks. Dilda et al. [7] implemented AES

(Advanced Encryption Standard) for Texas Instrument’s (TI)

low power microcontroller (MCU) MSP430 in C language.

Their implementations reach a data rate of 286.35 kb/s when

MSP430 uses a clock frequency of 8MHz, resulting in 224

cycles/byte. Their implementation requires 5160 bytes in

Flash memory and 260 bytes in SRAM. This implementation

was perhaps the first one over MSP430 MCU that matches

the 250 kb/s rate requirements of the IEEE 802.15.4 radio.

We are not aware of any assembly implementation results for

AES for this platform.

On Atmel’s AVR 8-bit microcontrollers, The fastest AES

implementation on AVR was reported by Osvik et al. [8].

Their assembly implementation of AES has an encryption rate

of 125 cycles/byte and a decryption rate of 181 cycles/byte.

Their implementation consumes 1912 bytes in Flash memory

and 176 bytes in SRAM.

The consumption of block cipher modes of operation

in WSN has been studied by Bauer et al. [9]. They studied

four different authenticated encryption with associated data

(AEAD) schemes on crossbow’s MICAz mote. They show

that CCFB+H is the most suitable for this platform and that

the performance of the GCM mode is significantly behind

the other. Huang et al. [10] implemented the NH function

family of the UMAC algorithm on the MSP430 MCU.

This implementation shows a good performance in terms of

computation. However, the tag length is 32 bits whereas the

function itself is 2−16 almost universal so the MAC security

is only 16-bit. This implies that half of the bits of the tag

are wasted. Since the communication is far more energy

consuming than computation in a WSN, this solution is not

suitable to constrained devices.

Stream ciphers have been also studied in WSNs. A

benchmark of the profile I ciphers in the eSTREAM portfolio

was implemented on the 8-bit microcontroller called the

MicaZ sensor node by Meiser et al. [11]. They show that

each stream cipher except Salsa20 has better performance

than AES in CTR mode.

The goal of this work is to investigate suitability of

cryptographic algorithms and their adaptability to the special

paradigm of energy harvesting sensor networks. We study

their behavior by an implementation. We only use well-

studied algorithms and not create our own algorithms which

could address the new issues of energy harvesting sensor

networks. This approach allows avoiding the construction

of efficient but totally insecure algorithms. We constructed

solutions which are completely modular. Each building block

of our solution can be replaced by another which offers the

same features but with other characteristics. This approach

seems to us the best since the applications of WSNs are

so vast that the constraints from one case to another can

be very different. We investigated the optimization of the

algorithms that are widely used in order to save as much

energy as possible. Finally, to illustrate our proposal, we

provide performance results for each implemented algorithm

on the selected platforms as well as a practical demonstration.

II. ALGORITHMS FOR ENERGY HARVESTING SENSOR

NETWORKS

In this section we show that buffering key stream bytes from

a stream cipher during times of high energy is optimal. We also

propose a method to adjust the buffer size. We show message

authentication code tags derived using universal hashing is also

optimal for energy harvesting sensor networks.

A. Stream ciphers

Stream ciphers are designed to be less energy consum-

ing than block ciphers. In addition, the generated key stream

bytes are then exclusive OR operated (XOR) with the plain

text bytes. It means that the key stream bytes can be computed

without the plain text. Our idea was to compute key stream

bytes as a function of the power available and store it. If the

power is low, the key stream bytes are only read from memory

and XORed with the plain text. If the power is high, the next

key stream bytes can be precomputed and stored again. The

stream cipher algorithm can be implemented in software or the

key stream can be generated from special hardware and stored

in memory. Some IEEE 802.15.4 transceivers like the Texas

Instrument’s (TI) CC2420 offer a hardware implementation

of AES in counter mode. This implementation can be used

to generate the key stream. However we studied only the

capability of software implementations.

Trivium is a stream cipher proposed by De Canière and

Preneel [12]. This cipher was designed to be efficient when it

is implemented in hardware and thus was proposed as a Profile

II candidate of the eSTREAM project. We selected this stream

cipher and implemented it in software. The software imple-

mentation of this cipher can be very flexible. For instance, we

can choose to take advantage of speed and implement a version

which output 64 bits of the key stream at each iteration or we

can privilege to reduce the memory footprint and output only

one word at each iteration. We found this property suitable

for constrained devices so we chose to implement this stream

cipher.

B. Wegman-Carter authenticators

The concept of universal hashing was introduced by

Carter and Wegman [13]. Their theoretical work allows con-

structing message authentication code which are provably

secure and often with better performances than other mes-

sage authentication code algorithms. In addition this is the



only general and secure construction which allows providing

authentication with a stream cipher. The theory of universal

hashing is based on universal functions. Generally speaking,

a universal hash function is a function which maps a message

of any length to a fixed length hash value and the probability

that two messages have the same hash value is very low.

We chose to implement an universal hash function family:

the Poly32 [14] function family. The Poly32 family has a very

small key size of only 32 bits. It allows having small memory

consumption but the collision probability increases with the

size of the message. In the context of a WSN this drawback

is not a big flaw. For example, if the specifications of IEEE

802.15.4 are applied, a message payload is at most 103 bytes

and we authenticate less than 128 bytes. If we authenticate

each IEEE 802.15.4 frame then the forgery probability of

Poly32 is at most 32 · 2−28 = 2−23 for a 128 byte packet.

In certain situations, it can be enough but in other it is clearly

sufficient. To have a higher security level, the sensor nodes

can compute the algorithm twice with two different keys. This

ensures the collision is squared but then the communication

cost and the key length are twice bigger.

C. Analysis

Since we have seen that buffering the key stream is

probably an efficient method when using stream cipher, in

the context of energy harvesting system, we now provide a

theorem that describes the conditions for feasibility of the

buffered stream cipher method. We also provide a method to

adjust the size of the buffer.

To compute the size of the buffer, we consider a basic

model where a power management system inputs to the sensor

node, a duty cycle D(i) at every time period i of duration T .

During a period i, the mote is active for a time τ(i) = D(i)·T .
We assume that if τ(i) is less than a threshold a, then the mote

can do its operation (transmission and computation). It does

not however have the time to compute the key stream bytes

to fill up the buffer. Above this threshold, the sensor node can

fill the buffer during a period τf ≤ τ(i)− a. We assume that

during the active period, the sensor node transmits at a rate

of r bytes of encrypted data per second. We also consider

bf the number of bytes per second the sensor node can fill

the buffer. Basically, a sensor node can use a buffered stream

cipher if for each period, it reads fewer number of bytes from

the buffer compared to the actual buffer size and the number

of key stream bytes that can be produced. Theorem 1 gives a

condition to achieve such a system.

Theorem 1: A system stores and reads a key stream from

a buffer of size B with an initial level L(0) can work if and

only if

L(0) +

i∑

j=0

(max(τ(j) − a, 0) · bf − τ(j) ∗ r) ≥ 0

for all integer i.

Proof: For a period i, the sensor node reads τ(i)∗r bytes

from the buffer in order to transmit its packets. The buffer will

be filled by at most max(τ(i)− a) · bf bytes. Let us consider

the function L which takes as parameter a period i and outputs

the maximal level of the buffer after this period. L(0) is the

size of the buffer before the mote starts working. Then we

have that

L(i+ 1) = L(i) + max(τ(i) − a) · bf − τ(i) ∗ r

or without recursion

L(i+ 1) = L(0) +
i∑

j=0

(max(τ(j) − a) · bf − τ(j)) ∗ r)

We see that the system works properly if and only if for each

period i the size of the buffer is non-negative i.e., if and only

if L(i) ≥ 0 for all i ≥ 0.
This theorem, does not give a way to compute the size

of the buffer but it allows checking if a system will work

properly or not. We can also see that without a buffer, the

condition becomes (max(τ(j) − a, 0) · bf − τ(j) ∗ r) ≥ 0 for

all integer i. It shows again that this method is applicable in

many more situations. In addition, the theorem indicates the

conditions under which it is useful to apply the buffered key

stream method. If the function L is an increasing function, then

it is not useful to apply this method since the key stream used

can be generated during the same period. If L is a decreasing

function, then the system is not well defined and cannot work

at that duty cycle.

We provide a simple model that allows us to compute the

size of the buffer. We suppose that τ is a periodic function of

period Tτ . During this period, the mote is able to store the key

stream only during a time τf at the beginning of the period.

Then the system works properly if the key stream generated

is equal to the key stream consumed during one period Tτ :

τcbf = Tτr

Since we want to store in the buffer all the key stream bytes

generated, we have:

B = τcbf

The result is quite apparent. It means that at each period, we

store the number of bytes we will need to use. let us consider a

practical example. Consider a stream cipher with bf = 25000
that is almost the rate of Trivium on MSP430. We also assume

that r = 300 and Tτ = 5 seconds. The sensor node must be

allowed to compute the key stream during τc = 60 ms period

and thus must have a buffer of size B = 1500 bytes.

The previous model can fit some practical sources that

are periodic. For more complex model, the size of the buffer

can be found by linear programming since we need to find the

minimum buffer size under the condition given by the previous

theorem.

III. IMPLEMENTATION RESULTS

A. Stream cipher implementation - Trivium

We have an inline assembly implementation of Trivium

optimized for the ATmega128Lmicrocontroller and a C imple-

mentation for the MSP430 microcontroller. For ATmega128L,



compilation was done with the avr-gcc compiler with -O2 and -

Os optimization options. The cycle consumption was obtained

with simulation in Avrora software. For MSP430, we used

the IAR Workbench compiler and simulator. We show the

performance results of our implementations in Table I. Table I

Initialisation Keystream generation (1 byte)

ATmega128L 44300 153
MSP430 24769 160

TABLE I
COMPUTATION CYCLES OF TRIVIUM

shows that the assembly implementation of AES by Osvik et

al. [8] has better performances on AVR MCU with a higher

security level. Therefore, AES-CTR can be a better choice

for this platform if the speed is the main concern. However,

Trivium has the advantage to be very flexible. It is trivial

to adapt the implementation to the constraints specific to the

platform and made another implementation on ATmega128L

of Trivium with a ROM consumption of 970 bytes in Flash

memory. On MSP430, we can notice that Trivium has better

performances than AES implementation. It also has a very low

energy and Flash memory consumption on this platform. This

ensures Trivium is a well adapted cipher for WSNs.

B. Message authentication code Poly32 implementation

We also implemented the Poly32 function on the

ATmega128l and MSP430 MCUs. We made measurements

of cycle consumption for these hash function families on

messages of sizes 9, 25, 37 and 128 bytes. The three first

sizes are the same as the one used by Bauer et al. [9] in their

measurements of AEAD schemes. We give Table II the results

we obtained for our Poly32 implementations on these MCUs.

Table II shows that this hash function is very efficient. On

Message size (bytes) ATmega128L MSP430

9 3929 594
25 7700 1300
37 12718 1827
128 40359 5695

TABLE II
COMPUTATION CYCLES OF POLY32

MSP430, the computations for this algorithm is six times lower

then the ATmega128L results. This is because the algorithm is

designed for 32-bit processors. Therefore, the 16-bit MSP430

is more suitable for this algorithm than the 8-bit AVR MCU.

Moreover, the MSP430 has a hardware 16-bit multiplier that

can speed up multiplications significantly.

On AVR platform, we implemented a Wegman-Carter

authentication mechanism based on Poly32 and Trivium. We

compared our results with the results of Bauer et al. . Fig 1

shows the results of the comparison.

Fig1 shows that if a 32-bit tag is required, then the Poly32-

Trivium method is the fastest on this platform. However, if a

Fig. 1. Wegman-Carter authentication mechanism

64-bit tag is required then this method is faster only for small

messages.

IV. PRACTICAL DEMONSTRATION

To show the gain of the buffered key stream method

in practice, we setup a small demonstration with an energy

harvesting system. The experimental setup consists of two

sensor nodes. One is the transmitter running on harvested

energy and the other the receiver working similar to a

base station connected to a PC. The receiver counts the

total number of messages received. The transmitter node is

powered by an energy harvesting system connected to two

solar panels. Above the solar panels there are four lamps of

20W each. The energy harvesting light source system was

developed locally. For energy storage, we used a 30milliFarad

ultra capacitor.

In this experiment, we first turn on the four lamps to

allow charging the supercapacitors. The sensor node does

not operate and start any communication activity until

the supercapacitors are completely charged. Once the

supercapacitors are charged, the initialisation algorithm is

executed and then the sensor node enters into low power

mode for a few seconds. Meanwhile, we turn off all the lamps

so that the mote is only powered by the supercapacitors.

Subsequently, the sensor node wakes up and starts sending

packets with 8-byte encrypted payloads. We considered two

different scenarios. In both cases, the Trivium algorithm is

used for encryption. In one case the key stream is generated

just before the packet is sent. In the other case, the key stream

is computed during the first phase when lamps are switched

on and stored in SRAM. The size of the buffer was derived

with the formula given in Section II-C. Fig 2 illustrates

the obtained results. Since the receiver counts the number

of packet received we were able to compare the number

of messages that can be sent between the two scenarios.

We consider this demonstration as a sufficiently accurate

measurement, unlike a measurement using a battery. This is



because issues such as state of charge, discharge characteristic

curves are no longer applicable for super capacitors. Fig 2

does show some variations in the number of packets received.

This is because of variations in the supercapacitor’s terminal

voltage due to slight timing mismatch during turning off

the lamps. The results presented are an average of several

attempts of the experiment.

When the key stream is not buffered, the sensor node
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Fig. 2. Demonstration results

is able to send an average of 364 packets, whereas the in

the second case, when the key stream is buffered, the sensor

node can send an average of 415 packets. One may now

conclude that on an average the sensor node can send 14%

more packets when the key stream is buffered. This demo

shows that for a practical energy harvesting system, it can

help the sensor node during low power harvesting period

where precomputed key streams are stored in memory.

V. CONCLUSION AND FURTHER QUESTIONS

We discovered that stream ciphers have the property

that their key stream is independent of the plain text. This

property allows an energy harvesting system to precompute

the key stream bytes and store them in SRAM until used.

We chose to implement the Trivium cipher which has

properties suitable for WSNs. We optimized its implemen-

tation and coded an assembly implementation of Trivium

for the AVR platforms. We also implemented a universal

hash function family. We provided performance results of

our implementation on the ATmega128L and MSP430 MCUs.

To the best of our knowledge, these algorithms have never

been studied on small and constrained platforms. Our results

show that Trivium has the same performance as other ciphers

on the AVR MCU and has better performance than AES

implementation on the MSP430 MCU. We have also remarked

that universal hash functions have very efficient construction to

provide authentication with stream ciphers. We derived some

constraints for applying the buffered key stream method to

energy harvesting sensor networks and we suggested a simple

method to determine the buffer size. Finally, our experimental

setup displays the benefits of using this method when the

energy source is a photonic source and we measured a gain

of 14% with our proposed scheme. This showed that indeed

the method of storing some key stream bytes in memory when

the power is high and to use them without computation when

the power is low is practical with an increase in performance.

We have however not studied key agreement schemes and

their necessary modification to adapt to power fluctuation. This

could be considered for future work. We have also not studied

networking issues with harvested energies. For instance, how

the neighbor nodes can assist an energy constrained node

for performing heavy computations. This approach, although

looks attractive, can be less useful since the cost of com-

munication is an order of magnitude higher than the cost of

computation. Nevertheless working in these directions could

lead to interesting developments.
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