
Cryptanalysis of Reduced Word Variants of Salsa

Sylvain Pelissier

EPFL LACAL, Lausanne, Switzerland

Abstract. The Salsa stream cipher was proposed by Bernstein as a
candidate of the eSTREAM project. As far as we know, the best crypt-
analysis of this cipher is the one proposed by Aumasson et al. at FSE 08
which uses a new concept called probabilistic neutral bits. This method
allows an adversary to recover a key when Salsa uses up to 8 rounds
instead of 20. Bernstein has asked cryptanalysts to apply their attack
against Salsa on versions with smaller word size (instead of the original
32-bit version) in order to check the validity of their attack. That is why
we decided to implement the version of Aumasson et al. attack working
with smaller words. In addition to check validity of this attack, apply-
ing the attack on smaller word sizes allowed us to give evidences that
the probabilistic neutral bits can be applied successfully in practice. We
applied this method to Salsa when it uses words reduced to 16 bits and
8 bits. For the 16-bit version of this attack we obtained complexity of
2117 when Salsa uses 6 rounds and complexity 271 for 5 rounds. For the
8-bit version we obtained a complexity of 238 for 5 rounds of Salsa. We
implemented a practical key recovery for Salsa on 8-bit words in order
to show the efficiency of this new method in practice.

Keywords: Stream cipher, Salsa20, Probabilistic neutral bits.

1 Introduction

The aim of the eSTREAM project [6] was to identify new stream ciphers which
could be used in a wild range of applications. This project was organised by the
European Network of Excellence in Cryptology (ECRYPT) from 2004 to 2008.
The Salsa20 stream cipher [3] was proposed by Bernstein as a candidate of this
project and was accepted for the final portfolio. The original version of Salsa20
is composed of 20 rounds, works with 32-bit words and uses modular additions,
bitwise XOR and rotation operations. Bernstein later proposed two variants
Salsa20/8 and Salsa20/12 [4], which work exactly as Salsa20 but are composed
respectively of 8 and 12 rounds. These ciphers were not official candidates of the
eSTREAM project.

Several cryptanalytic results of reduced versions of Salsa cipher were ob-
tained, none of which applies to the full version of Salsa. In 2005, Crowley [5]
proposed an attack on Salsa20/5 which uses a 3-round differential. This attack
has a time complexity of 2165 trials. In 2006, Fischer et al. [7] used a differential

after 4 rounds to construct an attack against Salsa20/6 with a time complexity
of 2177 trials.

In this paper, we study the best attack on Salsa20 with 256-bit keys due to
Aumasson et al. [1] which can break only up to 8 rounds. This attack uses a new
concept called probabilistic neutral bits to recover the key faster than exhaustive
search in a known keystream differential attack scenario. In other words, the
adversary needs to be able to collect the keystream bits for some pairs with a
desired input difference in the controllable public variables. For Salsa the public
variables are the IV (initial value) and the counter. The authors constructed a
key recovery attack against Salsa20/8 and Salsa20/7 with respective complexity
2251 and 2151. They also proposed an attack on Chacha, a slightly modified
version of Salsa, with complexity 2139 over 6 rounds.

In the very early publication of Salsa, Bernstein recommended the cryptan-
alysts [2] to evaluate their attack also on Salsa reduced to words of w bits with
w < 32 and to state the success probability of the attack for every different w.
However, to the best of our knowledge, the previous attacks against Salsa were
never tested with smaller words length. In addition, since reducing the length
of the words means reducing the attack complexity, there is also an opportunity
to bypass the outrageous complexity of 32-bit version. Hence we can see if the
concept of probabilistic neutral bits works in practice.

That is our motivation to explore how this new method can be applied for
word-reduced variants of Salsa. In particular, we applied this method when Salsa
is defined on 16-bit and 8-bit words. We can not break the 16-bit version (with
a 128-bit key) when it uses 7 rounds. Although we can attack 6-round and 5-
round variants with complexities 2117 and 271 respectively, these numbers are
still practically hard to reach. For the 8-bit version (with a 64-bit key) we can
not break the 6-round variant, however, the 5-round version can be broken in
time 238. We focus on the 5-round 8-bit version of Salsa20, implement the attack
and extract information which shows that the probabilistic neutral bits method
indeed works in practice. However, some care needs to be taken if we want to
exactly predict the attack complexity.

For the practical attack, an unforeseen phenomenon appears; some false pos-
itive key candidates are able to pass the optimal distinguisher. We investigate
how this affects the theoretical numbers of the attacks by Aumasson et al. [1]
on reduced round Salsa20 (defined over 32-bit words). Moreover, we provide a
way for reducing the increase of the complexity given by this phenomenon.

2 Specification of Salsa

We use the notation Salsa(w,R) for the stream cipher which operates on w-bit
words and is composed of R rounds. The 8w-bit key of this cipher is denoted by
the 8-word vector k = (k0, k1, ..., k7). The Salsa(w,R) cipher takes as parameters
the key and a two-word nonce v = (v0, v1). It outputs a sequence of 16-word
keystream blocks where the t-th block of this sequence is the output of the Salsa

function which takes as parameter a two-word counter (t0, t1) corresponding to

the integer t in addition to the key and the nonce. This function acts on the
4 × 4 matrix of words given by

X =

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

=

c0 k0 k1 k2

k3 c1 v0 v1

t0 t1 c2 k4

k5 k5 k7 c3

,

where the ci’s are known constants. For a matrix X , the Salsa function returns
the keystream block Z defined by Z = X + RoundR(X), where “+” denotes
the matrix modular addition and the Round function is based on a function
called the quarterround function. The quarterround function takes as parameter
a vector (x0, x1, x2, x3) and return a vector (y0, y1, y2, y3) which is defined by

y1 = x1 ⊕ [(x3 + x0) ≪ s0] ,

y2 = x2 ⊕ [(x0 + y1) ≪ s1] ,

y3 = x3 ⊕ [(y1 + y2) ≪ s2] ,

y0 = x0 ⊕ [(y2 + y3) ≪ s3] ,

where ≪ denotes the left rotation on w-bit words and the values si are the shift
values. Then RoundR function applies sequentially this quarterround function for
rounds i = 1, ..., R on columns (x0, x4, x8, x12), (x5, x9, x13, x1), (x10, x14, x2, x6)
and (x15, x3, x7, x11) if i is odd. For even rounds, this function is applied to the
rows (x0, x1, x2, x3), (x5, x6, x7, x4), (x10, x11, x8, x9) and (x15, x12, x13, x14).

For the following attack against Salsa, we use the fact that the function quar-

terround is invertible.
Note that the Salsa function is completely specified once we know the con-

stant and rotation values. The version of Salsa submitted at the eSTREAM
project called Salsa20, corresponds to Salsa(32,20) with constants (c0, c1, c2, c3) =
(0x61707865, 0x3320646E, 0x79622D32, 0x6B206574), and rotation values (s0, s1,

s2, s3) = (7, 9, 13, 18).
For Salsa(16,R) we keep the same Salsa function but for the quarterround

we set (c0, c1, c2, c3) = (0x6170, 0x7865, 0x3320, 0x646E) and (s0, s1, s2, s3) =
(4, 5, 7, 9). We also define Salsa(8,R) by setting (c0, c1, c2, c3) = (0x61, 0x70,
0x78, 0x65) and (s0, s1, s2, s3) = (2, 3, 4, 5).

The constants have been simply chosen by keeping the begining of those of
the original Salsa20. The rotation values have been selected to keep almost the
same ratio between the shift values and the word size. More precisely we fixed
the new value of si(w) for w-bit version of Salsa from the value of si(32) of the
32-bit version of Salsa by the formula si(w) =

⌈

w
32 · si(32)

⌉

.

3 Differential analysis

3.1 Attack model

We consider an adversary who wants to recover a key k of the stream cipher
Salsa(w,R). As shown in figure 1 we allow an adversary to interact with an oracle

as follows. The adversary can submit as many nonces v and counters t of his

Fig. 1: Attack model for the Salsa analysis

choice as he wants. Then the oracle answers to each request the corresponding
keystream block Z created from a fixed random key k, unknown to the adversary.

When the adversary has collected enough keystream blocks then he tries to
guess the secret key k. The data complexity is given in this paper in number of
pairs collected by the adversary. The time complexity will be explained later.

3.2 Truncated differentials

The concept of truncated differentials was introduced by Knudsen in 1995 [8].
A truncated differential on a single bit consists in introducing some difference
in the input of a cipher and looking at the output difference restricted to one
output bit.

In the case of Salsa analysis, if xi and x′

i are the i-th words of the initial
matrices X and X ′ then we define the difference between xi and x′

i to be ∆0
i =

xi ⊕ x′

i. We denote the j-th bit of xi by [xi]j . The attack presented in [1] uses r-
round truncated differential for the matrix input X . If Xr and X ′r, respectively,
are the transformation after r rounds of X and X ′ then we define xr

p and x′r
p

to be the p-th words of the matrices Xr and X ′r and we define the output
difference ∆r

p to be ∆r
p = xr

p ⊕ x′r
p . The attack sets a single bit input difference

i.e., [∆0
i]j = 1, where i ∈ {6, 7, 8, 9} and j ∈ {0, ..., w − 1}, and then considers

the single bit output difference [∆r
p]q, where p ∈ {0, ..., 15} and q ∈ {0, ..., w−1}

after r rounds. We denote such a truncated differential by ([∆r
p]q|[∆0

i]j). In this
context, the bias ǫd of a key is defined by

Pr
{

[∆r
p]q = 1|[∆0

i]j
}

=
1

2
(1 + ǫd) ,

where we consider v and t as random variables. In addition, the value ǫ∗d is
defined to be the median value of ǫd when the key is considered random.

Since the only values controlled by a user are v and t, we allow an attacker
to use only truncated differentials with i ∈ {6, 7, 8, 9} whereas we allow j ∈
{0, ..., w − 1}.

For finding significant differentials we choose some random keys and for each
of these keys we try all the possible truncated differentials ([∆r

p]q|[∆0
i]j). Since

i ∈ {6, 7, 8, 9}, p ∈ {0, ..., 15} and j, q ∈ {0, ..., w − 1} it gives 4 · 16 · w2 trials
for each key. Then we have to adjust the number of samples according to our
desired confidence level. The complexity for estimating the bias of the truncated
differentials is negligible compared with the complexity of the whole attack.

3.3 Backward computations

As explained before, if k, v and t are known, it is possible to invert the
operation Z = X +RoundR(X) since RoundR(X) is invertible and X is a matrix
depending on the three previous parameters. This means we can recover X from
a block Z. We denote the invert operation of RoundR by Round−1

R . We can
also access to the value of the r-th round with r < R since we have Xr =
Round−1

R−r(Z −X). We can define the function f which outputs the q-th LSB of

the word p of the matrix Round−1
R−r(Z − X) ⊕ Round−1

R−r(Z
′ − X ′). That is,

f(k, v, t, Z, Z ′) = [∆r
p]q .

If Z and Z ′ are outputs when we use a differential ([∆r
p]q|[∆0

i]j) of bias ǫd, we

have Pr{f(k̂, v, t, Z, Z ′) = 1} = 1
2 (1 + ǫd) if k̂ = k (the correct encryption key)

and since f must be unbiased then Pr{f(k̂, v, t, Z, Z ′) = 1} = 1
2 for almost all

k̂ 6= k. To sum up, we can verify the correctness of a key candidate. So far there
is nothing which allows us to recover the key faster as f may depend on all the
8 ·w key bits in general. However, the following attack consists of searching over
a space of subkey of m = 8 ·w − n bits. If k is the subkey of m bits of the key k

we try to construct g, an approximation of f and we define the bias ǫa to be

Pr{f(k, v, t, Z, Z ′) = g(k, v, t, Z, Z ′)} =
1

2
(1 + ǫa) .

We also define the bias of g to be

Pr{g(k, v, t, Z, Z ′) = 1} =
1

2
(1 + ǫ) .

In [1], the authors claim that under reasonable independence assumptions we
have ǫ = ǫa · ǫd. Again ǫ∗ denotes the median bias over all subkeys.

3.4 Probabilistic neutral bits

Previously we stated that we want to compute g(k, v, t, Z, Z ′) but first we
need to introduce the notion of neutral bits which is the cornerstone concept of
the attack. Informally a key bit kl is a neutral bit if complementing its value in

the key k does not change the output of f(k, v, t, Z, Z ′). More generally some
key bits may not have big influence on the output of f . These bits are called
non-significant key bits. The neutrality measure defined in the following can be
used to identify non-significant key bits from significant ones. The function g can
then be constructed by setting all the non-significant key bits to some arbitrary
value, e.g. zero.

Definition 1. The neutrality measure γl of a key bit kl is defined by

Pr{f(k, v, t, Z, Z ′) = f(k̃, v, t, Z, Z ′)} =
1

2
(1 + γl) ,

where k̃ is k except that the l-th bit is complemented.

A key bit which has a neutrality measure equal to 1 is called a neutral bit;
that is, it has no effect on the output of the function. More generally, in [1] for
a given threshold value γ, 0 < γ < 1, the key bits with γl > γ are referred to as
probabilistic neutral bits (PNBs); whereas the other key bits are called significant
key bits. The PNBs are also called non-significant key bits. Intuitively, the bigger
γ is the less effect the PNBs have on the output of the function. For the attack
against Salsa, a threshold γ is chosen and then the key bits are divided into the
set of significant and non-significant key bits according to this threshold value
and their neutrality measure. Then g is defined to be the same as f except that
the non-significant key bits are set to zero in k. The algorithm for estimating
the neutrality measure of a key bit is given in Appendix A.

3.5 Attack and Complexity

Now we can explain the complete attack against Salsa(w,R) and estimate its
complexity. The attack is divided into two phases: the precomputation and the
effective attack. The precomputation is not key related hence it is sufficient to
run this phase once for each differential we want to analyse. The second phase
is the effective attack which allows to recover the key.

Precomputation

1. Find a high probability r-round truncated differential as explained in sec-
tion 3.2.

2. Choose a threshold γ.
3. Construct the function f as defined in section 3.3.
4. Estimate the neutrality measure γl for each key bit with Algorithm 1.1.
5. Put all the key bits which have γl < γ in the set of significant bits.
6. Construct the function g from f by assigning a fixed value to all the non-

significant bits.
7. Estimate the median ǫ∗ by measuring the bias of g using random keys.
8. Estimate the number N of keystream block pairs needed for the effective

attack.

At step one we want to find a r-round truncated differential with the
highest bias ǫd to have then the lowest complexity in the effective attack. For
estimating the number N of keystream block pairs, we need to consider the
following problem of hypothesis testing. We are considering 2m sequences of
random variable where 2m − 1 of them are verifying the hypothesis H0, that is
the candidate is not the correct subkey. One of them is verifying the hypothesis
H1 that it is the correct subkey. In our case we look at a realisation a of random
variable A and then we have to find a decision rule D(a) = s which gives the
hypothesis Hs to accept. It is well-known that there are two kinds of error in
hypothesis testing. The first one is when D(a) = 0 but A ∈ H1 which is called
a Non-detection event. We will denote the probability of this event by pnd. The
second kind of possible error is when D(a) = 1 but A ∈ H0 which is called a
False alarm event. This event happens with probability pfa. We define the value
α to be such that pfa = 2−α. The Neyman-Pearson lemma gives us a result to
estimate the number N of keystream blocks we need in order to have a high
probability to succeed during the effective attack. Indeed, it can be shown that
for

N ≈
(√

α log 4 + 3
√

1 − ǫ2

ǫ

)2

we have pnd = 1.3 × 10−3 and pfa = 2−α.

Effective attack

1. For an unknown key k, collect N pairs of keystream blocks with the corre-
sponding input difference of the precomputation.

2. First phase: For each choice of the m significant bits:
• Estimate the bias of g using the N keystream block pairs.
• If the optimal distinguisher indicates this candidate to be the correct

one then add it to the key candidate list.
3. Second phase: For each key candidate k̃ in the list:

• Perform an exhaustive search over all the n remaining non-significant
bits of k̃.

• If the correct key is found display it and stop.

Let us estimate the complexity of the effective attack. We have that the
first phase is executed 2m times. During this phase we estimate the bias of g.
To achieve that we need to compute the backward computation of each of the
N keystream blocks pairs among R− r round. This is almost the same thing as
an encryption of Salsa. So for the first phase we need N · 2m Salsa encryptions.
If during the first phase the right subkey is inside the set of key candidates,
then the second phase is executed once for the right subkey and for each of the
false positives in the worst case. The second phase is a brute force on the n

non-significant bits so it takes 2n Salsa encryptions. Since there are on average
pfa ·2m = 2m−α false positives, we have a total complexity of 2m ·N +2n+28·w−α

Since N is a function of α, in practice we chose α such that the above formula

is minimised. The details of the construction of an optimal distinguisher are given
in [9].

In [1], the authors remarked that a false positive subkey which is correlated
to the correct subkey can introduce a high bias. It results in an increase of the
estimated value of pfa. In fact this bias happens if there are some significant bits
which have a high neutrality measure. In this case the bias would almost remain
unchanged for all combination of those key bits.

4 Experimental results

4.1 Salsa over 32-bit words

We have made an implementation of the attack presented in [1]. This version
of Salsa is Salsa(32,7), i.e., Salsa with 32-bit word and with 7 rounds. We used

the 4-round truncated differential
(

[∆4
1]14|[∆]31

)

with |ǫ∗d| = 0.131. We found the
same results in term of complexity as the ones given in [1]. We can see that we
obtain the same result as in the original paper. The best attack is given when
we choose γ = 0.5, then we have an attack which uses 226 keystream blocks and
2151 Salsa encryptions.

4.2 Salsa over 16-bit words

Truncated differentials: We have made a version of the differential analysis
for Salsa(16,7). In this case, we did not find a truncated differential after four
rounds forward bigger than 10−4. This shows that the version of Salsa defined
over 16-bit words is more resistant to differential analysis than the version over
32-bit words.

We have found several high probability differentials after three rounds of
Salsa. We give the two highest of them in Table 1.

ǫd ID OD

0.977 [∆0

7]15 [∆3

9]12
0.969 [∆0

7]14 [∆3

9]11

Table 1: Truncated differentials over three rounds (16-bit version)

Backward computation: For an attack against Salsa(16,6), we used the first
differential of Table 1, it does not give a lot of PNB’s after three rounds backward
computations but it was sufficient to have an attack better than brute force. The
results of this attack are given in Table 2.
The last line of Table 2 gives an attack of Salsa(16,6) with time complexity 2117

and data complexity 216.
We also decided to analyse Salsa(16,5), i.e., we looked only after two round

backward computations. We give in Table 3 the result of the attack using the first
differential of Table 1. This gives an attack of Salsa(16,5) with time complexity
271 and data complexity 27.

γ n |ǫ∗a| |ǫ∗| α Time Data

0.50 17 0.383 0, 3738 10 2120 28

0.40 23 0.091 0.0888 13 2118 213

0.30 28 0.023 0.0225 14 2117 216

Table 2: Attack on Salsa(16,6)

γ n |ǫ∗a| |ǫ∗| α Time Data

1.00 46 1.000 0.9761 41 289 26

0.99 64 0.988 0, 9631 60 271 27

0.90 81 0.753 0.7356 64 281 28

Table 3: Attack on Salsa(16,5)

4.3 Salsa over 8-bit words

Truncated differentials: We have also analysed Salsa(8,5). As for the 16-bit
case, we failed to find a useful truncated differential after four round forward
computations and the number of PNB’s were to small after three round backward
computations. Table 4 gives the differentials found after three round forward.

ǫd ID OD

0.7607 [∆0

7]7 [∆3

4]3
0.8205 [∆0

7]7 [∆3

4]4
0.7533 [∆0

8]7 [∆3

9]3
0.8146 [∆0

8]7 [∆3

9]4

Table 4: Truncated differentials

γ n |ǫ∗a| |ǫ∗| α Time Data

1.00 23 1.000 0.7607 18 248 27

0.90 31 0.880 0.6696 25 241 27

0.80 37 0.706 0.5372 30 238 28

0.70 40 0.706 0.5371 32 240 28

0.50 42 0.397 0.3019 32 242 210

Table 5: Attack on Salsa(8,5)

Backward computation We use the first differential of Table 4 in the attack.
As shown in Table 5, it gives an attack on Salsa(8,5) with time complexity 238 and
data complexity 28. These complexities are low enough to construct a practical
key recovery.

4.4 Practical key recovery on Salsa(8,5)

We have implemented a practical attack against Salsa(8,5). The machine we
used for this experiment was a PC with an Intel Pentium 4 CPU with a 3.00GHz
clock. We used the first differential of Table 4 and the neutrality measure of 0.8
with the parameters given in Table 5. We made 232 experiments of this attack
with random key each time.

The first phase outputs on average 153 key candidates. This is not what was
predicted by the theory because we expected to have average 2m−α = 2−7 false
positive, that is, we expected to have almost no false positive. This phenomenon
is due to what we explained in Section 3.5, there are some significant bits which
have a high neutrality measure. Figure 2 shows the distribution of the number
of subkey candidates after the first phase. If we consider this distribution as a
Gaussian distribution then the average of this distribution is 152.66, the variance
is 121.55 and with probability 0.997 the average is in the range [149, 154]. We
were able to well approximate the value of the number of subkey candidate after
the first phase.

This first phase lasts on average 7 hours and 15 minutes on our workstation.

Then for each candidate, the brute-force phase takes about 16 hours which gives
an overall attack in about 102 days (16×153 hours) whereas a brute-force attack
would take on average 124538 years on the same computer. We did not run the
whole second phase on our work station since it takes too long. However, we ran
it for the right subkey in order to verify that the program outputs the correct
key at the end. We also ran the brute force phase on some false subkeys in order
to measure the time it takes to finish this phase.

We have tried to increase the value of α to 65 instead of 30 in order to reduce
the set of key candidates. This gives that on average the set of key candidates
is 58 and the first phase takes about 14 hours and 20 minutes. With this modi-
fication, the whole attack lasts about 39 days. We have found that it is useless
to increase the value of α, the set size of the key candidates will stay almost the
same.

This practical key recovery attack shows that the concept of probabilistic
neutral bits can be applied successfully in practice but the number of false pos-
itive is higher than the one predicted by the theory. Therefore, the theoretical
complexity does not describe exactly the running time of the attack and some
simulation needs to be performed to refine the complexity estimation.

Reducing the average practical attack running time The distinguisher of
Section 3.5 is constructed by comparing the correlation measures of the subkeys
with a fixed threshold. In other words the ones having a correlation measure
greater than the predefined threshold pass the filter. This distinguisher does not
need extra memory to store the filtered subkeys. They can be tested for the sec-
ond phase right after they pass the filter. One can also consider a distinguisher
which works based on the ranking of the subkeys according to their correlation
measure which require extra memory to store the candidates which pass the fil-
ter but performs better than the earlier.

We measured the number of wrong subkeys which had bias larger than the
bias of the correct subkey. We give the results of this experiment in Figure 3.
With these results we were able to deduce that the number of false positive can-
didates which have a correlation measure bigger than the one of the right key
are on average 30 for the same setup as before. After the end of the first phase,
if we sort the subkey candidates in function of their correlation measure then it
gives on average less computation for the second phase and so we can construct
a modified effective attack which is completely given in Appendix B.

In this new attack, the second phase is executed on average only 30 times so
if we use α = 65 it reduces the whole running time to 21 days on average. De-
spite decreasing the total complexity, it is still higher than what is theoretically
expected. In Table 6 we give the comparison between the theoretical complexity
and practical results. We can see that the complexity in practice is higher than
the one predicted by the theory but it still gives an effective attack moreover
our modified attack reduces on average this complexity.

0

5

10

15

20

25

30

130 140 150 160 170 180

F
re

qu
en

cy

Number of key candidates

Key candidates distribution

Fig. 2: Subkey candidate distribution

0

5

10

15

20

0 20 40 60 80 100 120

F
re

qu
en

cy

Key rank

Key rank distribution

Fig. 3: Right subkey rank

Theoretical complexity Practical attack Modified attack

Salsa encryptions 238 245 242

Key stream blocks 28 28 28

Table 6: Complexity comparisons

Effect on the complexity of the attack on Salsa20/7 and Salsa20/8
We have seen that in the previous attack some unforeseen false positives can

appear at the end of the first phase increasing the complexity of the attack.
Therefore, it is necessary to investigate how the complexity 2251 of the attack on
Salsa20/8 proposed by Aumasson et al. is affected in light of this phenomenon.
Especially since it is quite close to the average complexity of 2255 of a full brute
force attack.

We made the experiment of computing the first phase for the 32-bit version of
Salsa20/7 but we fixed most of the key bits to the correct key bits value and we
permutated the remaining key bits which have the highest neutrality measure.
We did that because we have seen that the false positives are always given by
combination of significant key bits which have a high neutrality measure. In fact
we sorted the m significant key bits in the descending order of their neutrality
measure then we set the first m − t of them to the value of the right key and
we tried for each possibility of the t remaining key bits if the key candidate pass
the optimal distinguisher or not.

For Salsa20/7, we saw that after t = 4 the number of false positive stops to
increase and there is on average about 10 key candidates which pass the optimal
distinguisher. The time complexity of the attack presented by Aumasson et al.
was stated to be 2151 but in practice it should be 2152. With the improved at-
tack we presented in Section 4.4, the previous complexity should be unchanged
compared the complexity in [1]. In addition, we have made this previous sim-
ulation on Salsa(8,5) and after t = 15 the number of false positive is 157 and
stays constant. This number of false positives, is close to the one estimated in

Section 4.4. It shows that this simulation should be a solution for estimating the
number of false positive.

However, the simulations were too long to be applied for the attack on
Salsa20/8 due to huge data complexity of 231 . Nevertheless, we have seen that
false positive were given by significant key bits with a high neutrality measure.
In the attack on Salsa20/8, the thereshold γ is 0.12 so it is likely that there
are no significant key bits with a neutrality measure enough to pass the optimal
distinguisher. However, even with 23 false positives at the end of the first phase,
the complexity of the attack would remain unchanged since the complexity is
dominated by the first phase. Hence we still consider Salsa20/8 as a theoretically
broken cipher in time 2251.

5 Conclusion

We gave concrete evidence that the concept of probabilistic neutral bits can be
applied successfully in practice and since this concept is quite general we can
imagine that it could be applied to the analysis of other ciphers. As explained by
Bernstein, it is necessary to validate new attacks on reduced versions to see the
non predicted effects of the attack and to see if the predicted complexity agrees
with the practical running time. We showed that in this new kind of attack, an
unpredicted phenomenon could arise. After the first phase of the attack, some
false positives which are related to the key happen and they are not predicted
by the theory. This phenomenon needs to be taken into account to compute the
complexity of such attacks and compare the results with other attacks specially
when the attack is very competitive with the other known ones. We proposed a
new method to limit its impact. In particular, we show that this phenomenon
makes the best attack on Salsa20/7 two times slower but we expect that the
attack on Salsa20/8 remains unchanged.

We also see that Salsa on bigger word size needs more number of rounds to
achieve its theoretically expected security level. The minimum number of rounds
for 8, 16 and 32-bit versions is respectively 6, 7 and 9 to provide respective
security of 64, 128 and 256 bits.

Acknowledgments. I would like to thank Prof. Arjen Lentra who allowed me
to work on this project. I also would like to thank Shahram Khazaei and Martijn
Stam for all their help from the begining to the end of this project.

References

1. J.P. Aumasson, S. Fischer, S. Khazaei, W. Meier, and C. Rechberger. New Features
of Latin Dances: Analysis of Salsa, ChaCha, and Rumba. In Fast Software Encryp-

tion: 15th International Workshop, volume 5086/2008 of Lecture Notes in Computer

Science, pages 470 – 488, 2008.
2. D. J. Bernstein. Snuffle 2005: the Salsa20 encryption function, 2005.

http://cr.yp.to/snuffle.html .

http://cr.yp.to/snuffle.html

3. D.J. Bernstein. Salsa20 specication. 2005. http://cr.yp.to/snuffle/spec.pdf.
4. D.J. Bernstein. Salsa20/8 and Salsa20/12. eSTREAM, the ECRYPT Stream Cipher

Project, 2006. http://www.ecrypt.eu.org/stream/papersdir/2006/007.pdf.
5. P. Crowley. Truncated differential cryptanalysis of five rounds of

Salsa20. eSTREAM, the ECRYPT Stream Cipher Project, 2005.
http://www.ecrypt.eu.org/stream/papersdir/073.pdf.

6. ECRYPT. The eSTREAM project. http://www.ecrypt.eu.org/stream/.
7. S. Fischer, W. Meier, C. Berbain, J.F. Biasse, and M.J.B. Robshaw. Non-

randomness in eSTREAM Candidates Salsa20 and TSC-4. In Progress in Cryptol-

ogy - INDOCRYPT 2006, volume 4329/2006 of Lecture Notes in Computer Science,
pages 2–16, 2006.

8. L.R. Knudsen. Truncated and higher order differentials. In Fast Software En-

cryption: Second International Workshop, volume 1008/1995 of Lecture Notes in

Computer Science, pages 196–196, 1995.
9. T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext only. IEEE

Transactions on Computers, 34:81–85, 1985.

A Computation of the Neutrality Measure

Algorithm 1.1 Neutrality measure estimation

Require: The number of total rounds R of Salsa20, the number of foreword rounds r,
the key bit index l, the truncated differential chosen and the number of samples T .

Ensure: Determine an estimation of neutrality measure γl

ctr← 0
for i = 1 to T do

Pick a random X (with fixed constants).
Compute X ′ from X by complementing bit [xi]j in matrix X.
Z ← X + RoundR(X)
Z′ ← X ′ + RoundR(X ′)
u← Round−1

r−R(Z −X)
L

Round−1

r−R(Z′ −X)
Flip the l-th key bit in X and X ′

u∗ ← Round−1

r−R(Z −X)
L

Round−1

r−R(Z′ −X)
if [up]q = [u∗

p]q then

ctr← ctr + 1
end if

end for

γl ← 2 · ctr

T

B Modified effective attack

Effective attack:

1. For an unknown key k, collect N pairs of keystream blocks with the corre-
sponding input difference of the precomputation.

http://cr.yp.to/snuffle/spec.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/007.pdf
http://www.ecrypt.eu.org/stream/papersdir/073.pdf
http://www.ecrypt.eu.org/stream/

2. First phase: For each choice of the m significant bits:
• Estimate the bias of g using the N keystream block pairs.
• If the optimal distinguisher indicates this candidate to be the correct

one then add it to the key candidate list with its bias value.
3. Second phase: Sort the list of subkey candidate in the descending order of

their bias.
4. For each key candidates k̃ in the list:

• Perform an exhaustive search over all the n remaining non-significant
bits of k̃.

• If the correct key is found display it and stop.

	Cryptanalysis of Reduced Word Variants of Salsa
	Sylvain Pelissier

