
Blind Fault Attack against SPN Ciphers

Roman Korkikian∗†, Sylvain Pelissier∗, David Naccache‡

∗ Kudelski Security †Université Panthéon Assas
Route de Genève 22-24, 1033 Cheseaux, Switzerland 12 Place du Panthéon, 75005, Paris, France.

firstname.lastname@nagra.com roman.korkikian@etudiants.u-paris2.fr

‡École normale supérieure
Département d’informatique

45, rue d’Ulm, 75005, Paris CEDEX 05, France.
david.naccache@ens.fr

Abstract—This paper presents a novel fault attack against
Substitution Permutation Networks. The main advantage of
the method is an absence of necessity to know the exact
cipher’s input and output values. The attack relies only on
the number of faulty ciphertexts originated from the same
unknown plaintext. The underlying model is a multiple bit-
set or bit-reset faults injected several times at the same
intermediate round state. This method can be applied against
any round thus any round key can be extracted. The attack
was shown to be efficient by simulation against several SPN
block ciphers.

Keywords-SPN, AES, LED, SAFER++, Block cipher, Differ-
ential Fault Analysis, Collision Fault Analysis, Side Channel
Analysis

I. INTRODUCTION

One of the first examples of faults being injected into a
chip was accidental. It was noticed that radioactive parti-
cles produced by elements naturally present in packaging
material [1] caused faults in chips. Specifically, Uranium-
235, Uranium-238 and Thorium-230 residues present in
the packaging decay to Lead-206 while releasing α par-
ticles. These particles create a charge in sensitive chip
areas causing bits to flip. Whilst these elements were only
present in two or three parts per million, this concentration
was sufficient to affect chip behavior. Subsequent research
included studying and simulating the effects of cosmic rays
on semiconductors [2]. Cosmic rays are very weak at ground
level due to the earths atmosphere, but their effect becomes
more pronounced in the upper atmosphere and outer space.
This problem is further compounded by the fact that the
more RAM a computer has the higher the chance of a fault
occurring. This has provoked a great deal of research by
organizations such as NASA and Boeing. Most of the work
on fault resistance was motivated by this vulnerability to
charged particles. Considerable engineering endeavors were
devoted to the hardening of electronic devices designed to
operate in harsh environments. This has mainly been done
using simulators to model circuits and study the effect of

randomly induced faults. Various fault induction methods
have since been discovered but all have in common similar
effects on chips. One such example is the use of a laser
to imitate the effect of charged particles [3]. The different
faults that can be produced have been characterized to
enable the design of suitable protections. The first attack
that used a fault to derive secret information [4] targeted
the RSA public-key cryptosystem. Basically, a fault was
introduced to reveal the two secret prime numbers that
compromised the RSA system. This led to similar attacks on
other cryptographic algorithms. In particular, Fault Attacks
(FAs) were adapted to Substitution Permutation Networks
(SPNs) [5]. SPN-based algorithms apply several independent
transformations that can be efficiently implemented in both
software and hardware [6]. Experience, along with many
years of cryptanalysis effort, indicates that SPNs are a good
block cipher build-blocks [7]–[11], even though they are
vulnerable to fault attacks. The two main FAs against SPN
are Differential Fault Analysis (DFA) and Collision Fault
Analysis (CFA). These attacks have been mostly developed
for the AES but have been later adapted for other SPN
ciphers.

DFA requires a pair of correct and faulty ciphertexts that
are the result of the same plaintext encryption [5], [12], [13].
Since two encryptions perform identically up to the fault
injection point, the two ciphertexts can be considered as the
outputs of a reduced-round block cipher where the inputs
are unknown but have a small difference [14]. Analyzing
the propagation of this difference (called differential) over
the small number of rounds, an attacker can gain key
information involved in these rounds.

When the same plaintext cannot be encrypted twice, a
ciphertext-based attack remains practical as shown by [15].
A bias introduced at the input of an S-box can be used
to distinguish the correct key. Because the S-box is a non-
linear transformation then an input’s entropy computed from
all the faulty results with a wrong key guess would be undis-
tinguishable from the entropy of a uniformly distributed

2014 Workshop on Fault Diagnosis and Tolerance in Cryptography

978-1-4799-6292-1/14 $31.00 © 2014 IEEE

DOI 10.1109/FDTC.2014.19

94

variable. The input’s entropy computed for the correct key
candidate shall be different due to the introduced bias. The
multiple bit-reset fault model considered in [15] is a typical
fault that can introduce a bias.

While DFA uses a fault injected at the last SPN rounds,
CFA exploits errors at the beginning of encryption [16],
[17]. CFA looks for a collision between genuine and faulty
encryptions of plaintexts M and M̃ respectively. Since the
encryptions perform differently up to the point when the
fault compensates both state values, the two plaintexts could
be considered as the inputs to a reduced-round block cipher
that outputs a predictable differential after several rounds.

To the authors’ best knowledge all FAs against SPNs
require either full control over the cipher’s input and/or the
opportunity to inspect the encryption’s result. Restricting the
attacker’s access to plaintext and ciphertext is considered as
good countermeasure for systems where the secret data can
not be easily modified, for example a shared root key used in
UMTS [18]. However, these countermeasures cannot protect
the system against all FAs.

1) Our contribution: In this paper we present an attack
that does not require a direct access to cipher’s input and
output. The attack assumes the following: (1) an attacker can
encrypt several unknown plaintexts multiple times under the
same key; (2) encryption results can be compared between
themselves without disclosing their values (this is somewhat
similar to the ”generic model” often used in public-key
cryptography [19]); (3) a multiple random bit-reset or bit-set
fault can be injected during the encryption rounds.

Our method infers information from the relationship
between the number of faulty ciphertexts originated from
the same unknown plaintext and an intermediate state’s
Hamming weight. We show that each SPN round comprises
a key-involved operation that can reveal the round key if
input and output Hamming weights of this operation are
known. Simulations show that this attack is practical against
LED [9], AES [8] and SAFER++ [20] algorithms.

The attack is performed in two phases: fault injection and
key search. The fault injection phase is used to determine the
Hamming weights of intermediate states. When a number
of fault injections is limited, we determine an occurrence
probability for each possible Hamming weight value. The
key search phase is done in two steps: The first step applies a
finite field equation to filter-out key candidates. The second
step assigns likelihood information to each key candidate
which, in turn, reveals the correct key with high probability.

2) Paper organisation: The paper is organized as follows.
Section II recalls Substitution Permutation Networks and
discusses previous fault-based attacks. Section III introduces
the new FA. Section IV explains how to determine the fault
injection point and the natural countermeasures against this
attack. Section V concludes the paper.

II. PRELIMINARIES

A. Substitution-permutation networks

A Substitution Permutation Network (SPN) is a sequence
of invertible transformations used in symmetric key cryp-
tosystems. An SPN is made up of confusion and diffusion
stages. Coupled with key mixing operation, confusion and
diffusion transforms form a round. Iteratively applied rounds
yield an invertible mapping fK : Fn2 → Fn2 called the block
cipher, where K is a block cipher key, usually referred to
as a master key, n is the size of plaintext and ciphertext in
bits.

A confusion stage or S-box, denoted as S, is a non-linear
bijective transformation used to map a b-bit element into
another b-bit element:

S : Fb2 → Fb2 (1)

During the confusion stage the current n-bit string is fed
into a series of m S-boxes, where n = bm. The same set
of S-boxes may be used in each round, or the S-boxes may
change from round to round.

The diffusion layer, denoted as P, is a linear transform
that reshuffles n-bit inputs.

P :
(
Fb2
)m → (

Fb2
)m

(2)

The main purpose of diffusion is to spread small input vari-
ations over a significant amount of output bits. Permutation
P is designed so that the output bits of any given S-box are
spread over different S-boxes in the next round.

A key mixing operation, denoted as A, combines the n-bit
input with an n-bit round key Ki.

A : Fn2 × Fn2 → Fn2 (3)

The sub-keys Ki are derived from the master key K accord-
ing to the key schedule algorithm. The key schedule is often
made of a simple confusion-diffusion operations set.

A typical SPN-based block cipher, shown on Figure 1,
can be described by the equation (4).

FK : A |KR ◦S ◦
(
©R−1
r=1 A |Kr ◦P ◦ S

)
◦ A |K0

(4)

Note that the very first and last operations performed
in this SPN are sub-key mixing operations. This is called
whitening and is regarded as a useful way to prevent an
attacker from even beginning to carry out an encryption or
decryption operation if the key is not known.

In the last round, the permutation P is not applied.
Consequently, the encryption algorithm can also be used for
decryption, if appropriate modifications are made for the key
schedule and if permutations are replaced be their inverses.

The following definitions are used along the paper.

Hamming weight Let X be an array of M elements X =
[x0, x1, . . . , xM−1]. The number of non-zero elements in
X, known as the Hamming weight of X, is denoted by
HW(X).

95

Plaintext

A[K0]: K0 mixing

S1,1 S1,j S1,m

Round 1P: diffusion

A[K1]: K1 mixing

Sr,1 Sr,j Sr,m

Round rP: diffusion

A[Kr]: Kr mixing

SR,1 SR,j SR,m

Round R
A[KR]: KR mixing

Ciphertext

Figure 1: A typical SPN-based block cipher.

Entropy Suppose X is a discrete random variable which
takes values from Fb2. Then, the entropy of a random variable
X is defined to be the following quantity in bits

H(X) = −
∑
x∈Fb2

Pr[X = x] log2(Pr[X = x]) (5)

Note that if variable X is uniformly distributed, i.e.
Pr[X = x] = 1

2b
for all x ∈ Fb2, then H(X) = b.

T-radical branch number A T-radical branch number BT
of a linear diffusion layer P is defined as:

BT (P) = min
HW(x)=T

{HW (P (x))}, x ∈
(
Fb2
)m

A definition of leakage-immunity similar to one given
in [21] is given below. We consider an operation F (k,m)
taking an unknown key k and a message m as arguments.
A definition of Hamming Weight Probability Distribution
(HWPD) for operation F which will be used in the section
III is also recalled below.

Leakage immune operation F Operation F (k,m) is
leakage immune if for all distributions (k,m) and (k′,m′)
the distributions F (k,m) and F (k′,m′) are statistically
indistinguishable.

Hamming weight probability distribution for operation F
A Hamming Weight Probability Distribution (HWPD) for
operation F

Pr[HW(x),HW(F (k, x))] (6)

is a bivariate probability distribution to obtain a pair
(HW(x),HW(F (k, x))) for a given key k ∈ Fb2 and a
uniform input x ∈ Fb2.

We will use the following notations:
n block size in bits
R number of SPN cipher rounds
b S-box input/output size (S stands for the S-box)
m number of S-box invocations per round
P the linear diffusion
A the key mixing
Kr r-round key
Xr r-round input
XS
r r-round state after S-box

XSP
r r-round state after linear diffusion
HW(x) Hamming weight of x
H(X) the entropy of X
∆ a random variable defined over a subset of Fb2

(an error space)
δ ∈ Fb2 an outcome of ∆ i.e. a computational error
BT (P) T -radical branch number of a diffusion layer
K∗ a correct key
(Ci, C̃i) outputs of correct and faulty encryptions of an

identical plaintext
(M i, M̃ i) inputs of correct and faulty encryptions that

gave the same ciphertext

When indexed by j ∈ [1,m], the notations Kr,j , Xr,j ,
XS
r,j , X

SP
r,j refer to S-box number j used to indicated parts

of Kr, Xr, X
S
r , X

SP
r (see Figure 2).

B. Ciphertext-based attacks against SPN

This section recalls ciphertext-based attacks against SPN
ciphers.

1) Attack on round R: We consider a fault δ introduced
before S-box transformation in the last round R. Since all
the SPN operations are reversible the correct XR and faulty
δ ⊕XR states can be computed as follows:

XR = S−1 ◦ A−1 |KR (C)

δ ⊕XR = S−1 ◦ A−1 |KR (C̃)
(7)

Equations (7) can be considered as a round-reduced cipher
where two known inputs C 6= C̃ produce an output with a
predictable differential δ. For a given key candidate K and
a ciphertext pair (C̃i, Ci) we have:

δiK = S−1 ◦ A−1 |K (C̃i)⊕ S−1 ◦ A−1 |K (Ci) (8)

The introduced error δi is assumed to be the outcome a non
uniformly distributed variable ∆, i.e. H(∆) = H < b. Given
the non-linear property of the S-box the corresponding set
of errors δiK 6=K∗ computed for all the pairs (Ci, C̃i) with
a wrong key shall be uniformly distributed [22]. The set of
errors δiK=K∗ computed with the correct key shall be non
uniformly distributed; hence, the error entropy can be used
for key selection.

lim
i→+∞

H(∆K) =

{
b if K 6= K∗

H if K = K∗
(9)

96

The general entropy approach is described in [23], while a
special case when H(∆K∗) = 1 is described in [5].

When the same plaintext cannot be encrypted twice,
ciphertext-based attacks still apply. In that case the fault has
to corrupt the uniformity of the entire input so the entropy
would be smaller for the correct key guess as stated by [15].
The fault that can corrupt the uniformity of an entire input
is the AND and OR fault models:

X̃R = δ ∧XR

X̃R = δ ∨XR

2) Attack on round R− 1: Another generally considered
ciphertext-based attack exploits computational errors before
the last P permutation at round R − 1. Both correct XS

R−1

and faulty δ⊕XS
R−1 states can be computed from the known

ciphertexts:

XS
R−1 = P−1 ◦ A−1 |KR−1

◦S−1 ◦ A−1 |KR (C)

δ ⊕XS
R−1 = P−1 ◦ A−1 |KR−1

◦S−1 ◦ A−1 |KR (C̃)

Note that the error space is a subset of
(
Fb2
)BHW(δ)(P)

, where
BHW(δ)(P) is a HW(δ)-branch number. The differential δi

can be written as a function of KR−1,KR, C
i, C̃i as shown

by equation (10).

δi = P−1 ◦ A−1 |KR−1
◦S−1 ◦ A−1 |KR (C̃i)⊕

P−1 ◦ A−1 |KR−1
◦S−1 ◦ A−1 |KR (Ci)

(10)

To recover the correct key, the variable δK=K∗ obtained for
the correct key has to be at least distinguishable from the
variable X uniformly distributed over

(
Fb2
)BHW(δ)(P)

. Since
equation (10) exploits both KR−1,KR round keys the search
key space has to be squared to

(
Fb2
)2·BHW(δ)(P)

.
The expression (10) can be simplified if the key mixing

operation is a bit-wise exclusive or (XOR) between a round
key and a state, i.e. A |K ◦X : K ⊕X , and permutation P
is linear with respect to XOR:

δi = P−1
(
S−1 ◦ A−1 |KR (C̃i)⊕
S−1 ◦ A−1 |KR (Ci)

) (11)

In this case the candidate key space is reduced to(
Fb2
)BHW(δ)(P)

.
The attack described by equation (11) can be applied

against AES if an error has entropy smaller than 32. The
fault when up to three out of four bytes of MixColumn’s
input are modified is described in [5], [13], [24], all 4 bytes
modification is presented in [25], [26].

C. Plaintext-based attacks against SPN

Plaintext-based attacks, namely CFA, can be used when
a cipher’s output cannot be directly accessed but compared
with previous encryption results. The main difference with
ciphertext-based attacks is that an attacker inject faults in
early SPN rounds. When a correct and tampered encryptions
of different plaintexts returned the same result an attacker
can gain secret key information.

1) Attack on first round: Similar to the previously de-
scribed last round attack we consider a fault δ introduced
after S-box transformation at the first SPN round. The
correct XS

1 and faulty X̃S
1 states can be computed as

follows:
XS

1 = S ◦ A |K0
(M)

X̃S
1 = S ◦ A |K0

(M̃)
(12)

Equation (12) can be considered as a round-reduced cipher
where two known inputs M 6= M̃ produce an output with a
predictable differential δ. An injected error δ modified the
state X̃S

1 so that:

XS
1 = X̃S

1 ⊕ δ
δ = XS

1 ⊕ X̃S
1

δ = S ◦ A |K0 (M)⊕ S ◦ A |K0 (M̃) (13)

For a given key byte candidate K and a byte pair (M̃ i,M i)
we have:

δiK = S ◦ A |K (M̃ i)⊕ S ◦ A |K (M i)

The errors δi are assumed to be non uniformly distributed,
i.e. H(∆) = H < b. Given the properties of S-box the
corresponding set of errors δiK 6=K∗ computed with a wrong
key for all the encryptions of (M i, M̃ i) resulted in ciphertext
collision shall be uniformly distributed. The set of errors
δiK=K∗ computed with the correct key shall converge to non
uniform distribution. Therefore the error entropy can be used
to distinguish the correct key candidate:

lim
i→+∞

H(∆K) =

{
b if K 6= K∗

H if K = K∗
(14)

A special case when H(∆K∗) = 1 is described in [17].
To the authors’ best knowledge both the general entropy

case [23] and faulty ciphertexts only attack [15] have not
been adapted for the first SPN round yet. A comparison of
equations (7) and (12) shows that this adaptation is indeed
possible as suggested by [14].

III. FAULT BASED ATTACKS OF SUBSTITUTION
PERMUTATION NETWORK

A. Substitution layer leakage

Our attack targets an SPN operation between two rounds,
r and r + 1, shown in Figure 2 in blue. This operation can
be described by equation (15).

XS
r+1,j = Sr+1,j ◦ A |Kr,j

(
XSP
r,j

)
, j ∈ [1,m] (15)

For simplicity this cryptographic operation is denoted as:

F (Kr,j , X
SP
r,j) = Sr+1,j ◦ A |Kr,j

(
XSP
r,j

)
(16)

The input XSP
r,j and output XS

r+1,j size is 4-bit for the ci-
phers LED [9] and KLEIN [11] while 8-bit input and output
variables are used in AES [8] and SAFER++ [20]. However
any other possible S-box input size can be considered.

97

P

Round r Round r+1

XSP
r,1 A[Kr,1] Sr+1,1 XS

r+1,1

XSP
r,j A[Kr,j] Sr+1,j XS

r+1,j

XSP
r,M A[Kr,M] Sr+1,M XS

r+1,M

P

Figure 2: Confusion operation at round r + 1.

We want to show that a Hamming weight pair(
HW(XSP

r,j),HW(F (Kr,j , X
SP
r,j))

)
can be used to distin-

guish key values Kr,j . The easiest way to demonstrate this
is to consider zero Hamming weight, i.e. XSP

r,j = 0. In that
case, only one key K

′

r,j will provide a zero Hamming weight
output. Similarly, only one key K

′′

r,j will result in output
which Hamming weight equals b (all bits of output equal
to one), thus keys K

′

r,j and K
′′

r,j can be distinguished. This
dependency is illustrated with AES.

F (Kr,j , X
SP
r,j) = S[Kr,j ⊕XSP

r,j], j ∈ [1,m] (17)

Figure 3 illustrates the HWPD for AES computed for two
different key values. Clearly, these distributions are different
and can hence serve for key differentiation. Due to the nature
of S-boxes, similar results are observed on other SPN block
ciphers such as LED or SAFER++.

HWPD key dependency can be exploited when the Ham-
ming weight of the operation’s input and output are known
to the attacker. So the first problem is to find the input
and output Hamming weights for operation F . To obtain
a Hamming weight of an intermediate state a multiple bit-
reset fault model can be used:

X̃Ω
r,j = XΩ

r,j ∧ e XΩ
r,j , e ∈ Fb2 (18)

where XΩ is a part of the state in round r after any SPN
transformation. The maximum number of possible values
for X̃Ω

r,j , denoted by λ = #X̃Ω
r,j , is a function of the data

block’s Hamming weight hΩ
r,j , as shown by equation (19).

λ = #X̃Ω
r,j = 2h

Ω
r,j (19)

Since each value of X̃Ω
r,j = XΩ

r,j ∧ e will lead to a different
output, equation (19) also links the maximum number of
observed ciphertexts and the Hamming weight of XΩ

r,j . For
byte values the maximum number of different ciphertexts is
λ ∈ {1, 2, . . . , 256} while for nibbles λ ∈ {1, 2, . . . , 16}.

In this paper the fault injection is used to determine
the Hamming weight of the input and output state-parts
XSP
r,j and XS

r+1,j used in equation (15). The manner in
which Hamming weight is determined by fault injection is
illustrated in the next subsection III-B. Once the Hamming

weight of the pair XSP,1
r,j , XS,1

r+1,j is found, the attacker
can search the correct key value using key sifting and key
likelihood information, as will be discussed in the subsection
III-C.

B. Hamming weight computation

We assume that a multiple bit-reset error1 e can be
invoked in the a middle cipher round:

X̃Ω
r,j = XΩ

r,j ∧ e XΩ
r,j , e ∈ Fb2 (20)

The error e is assumed to be uniformly distributed over
the space Fb2, hence all ciphertexts have equal appearance
probabilities. We assume that the value X̃Ω

r,j cannot be
directly accessed, so the attack’s principal idea is to de-
termine the Hamming weight of this variable by injecting `
random multiple bit-reset faults and observing the number
of different outcoming ciphertexts.

We assume that Y` different ciphertexts are observed after
` fault injections. We want to compute the probability that
faults injected in a variable with the Hamming weight λ =

2h
Ω
r,j could produce Y` different ciphertexts. This can be

considered as an occupancy problem [27] where Y` out of
λ bins are occupied after throwing ` balls.

In the classical occupancy problem, the probability
Pr(Y` = κ) can be computed using equation (21) given
in [28].

Pr(Y` = κ) =

{
λ!ακ,`

(λ−κ)!λ`
κ ∈ {1, ...,min(λ, `)}

0 else
(21)

where ακ,` is the Stirling number of the second kind i.e.

ακ,` =
1

κ!

κ∑
i=1

(−1)κ−i
(
κ

i

)
i`

In our case the values Y` and ` are known but λ must be
determined. To estimate λ we build a maximum likelihood
estimator λ̂ as a function of κ and `, i.e. we compute
equation (21) for all the values λi ≥ 2dlog2(κ)e and amongst

1The attack is also working with the multiple bit-set fault model

98

(a) HWPD distribution for the key byte 0xC4:
Pr [HW(X),HW(S[X ⊕ 0xC4])], X ∈ [0, 255]

(b) HWPD distribution for the key byte 0x62:
Pr [HW(X),HW(S[X ⊕ 0x62])], X ∈ [0, 255]

Figure 3: Hamming weight probability distribution for the AES operation S[X ⊕ k].

them the λi with the maximum probability is assumed to be
correct:

λ̂ = arg maxλi Pr(Y` = κ|λi) (22)

The above Hamming weight detection method was simu-
lated for nibbles and bytes. A given number ` of randomly
generated multiple bit-reset faults were injected into a ran-
domly generated variable x and the number of different
faulty values Y` were used to determine the Hamming weight
of the variable using formula (22). The total number of
successfully determined Hamming weights was recorded
for 105 trials and the success rate was computed for each
number of faults ` as shown on Figure 4.

On the average 15 faults sufficed to detect the Hamming
weight of a nibble with a 99% probability. Determining bytes
with the same probability required 62 faults.

The occupancy problem and various estimators were pre-
viously discussed in [29], however the maximum likelihood
estimator was chosen due to the limited number of possible
bins and computational simplicity.

C. Key search

An attacker has N pairs of Hamming weights(
HW(XSP,i

r,j),HW(XS,i
r+1,j)

)
, i ∈ [1, N] received for the

same operation XS,i
r+1,j = Sr+1,j ◦ A |Kr,j

(
XSP,i
r,j

)
.

In the following part, the notations
(
hir, h

i
r+1

)
and(

HW(XSP,i
r,j),HW(XS,i

r+1,j)
)

are interchangeable.
The key search process is performed in two steps: The first

step, called key sifting, is a typical equation-based approach
when the key has to satisfy a set of equations. The present
attack uses N pairs

(
hir, h

i
r+1

)
to find the key candidates

that satisfy the following constraint:

L =
{
k ∈ Fb2 : ∀i ∈ [1, N] ∃x ∈ Fb2,
HW(x) = hir,
HW(Sr+1,j ◦ A |k (x)) = hir+1

} (23)

0 10 20 30 40 50 60 70 80

0

0.2

0.4

0.6

0.8

1

Number of faults

H
am

m
in

g
 w

ei
g

h
t

re
co

v
er

y
 r

at
e

Hamming weight recovery rate for 4−bits variable

Hamming weight recovery rate for 8−bits variable

Figure 4: Results of Hamming weight computation by fault
injection.

Reducing |L| requires a significantly higher number of pairs
than ciphertext- or plaintext-based attacks.

To perform second step, called key likelihood estimation,
the HWPD Prk [HW(x),HW (Sr+1,j ◦ A |k (x))] is pre-
computed for each key value k ∈ Fb2 and uniformly dis-
tributed x ∈ Fb2. During this step the probability distribution
function is computed for the list of obtained Hamming
weight pairs Prr

[
hjr, h

j
r+1

]
. Then the Euclidean distance

between the Prr and Prk is computed for each key from
the list k ∈ L:

D(Prr,Prk) =

√ ∑
∀hi,hj

(Prr [hi, hj]− Prk [hi, hj])
2 (24)

and the key candidate with the minimum distance is betted
upon as correct:

k̂ = arg minkD(Prr,Prk) (25)

99

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

Number of hamming weight pairs

K
ey

 r
ec

o
v
er

y
 s

u
cc

es
s

ra
te

Success rate after key sifiting

Success rate after key sifting and key likelihood estimation

(a) LED

0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

Number of hamming weight pairs

K
ey

 r
ec

o
v
er

y
 s

u
cc

es
s

ra
te

Success rate after key sifiting

Success rate after key sifting and key likelihood estimation

(b) AES

0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

Number of hamming weight pairs

K
ey

 r
ec

o
v
er

y
 s

u
cc

es
s

ra
te

Success rate after key sifiting

Success rate after key sifting and key likelihood estimation

(c) SAFER++

Figure 5: Key recovery success rate for different S-boxes
Sr+1,j ◦ A |Kr,j

(
XSP
r,j

)
.

D. Simulation

The key search algorithm was simulated for LED, AES
and SAFER++. Operation (15) of each cipher is described in
the Table I. Note that LED and AES uses bit-wise exclusive

or as key mixing operation, while SAFER++ applies byte
addition. SAFER++ uses two kind of S-boxes based on
discrete logarithm and exponentiation. In our test we used
discrete logarithm-based S-box with 256 elements.

The key search was performed with known Hamming
weights

(
HW(XSP,i

r),HW(XS,i
r+1)

)
that could have been

recovered at an earlier step by fault injection. The successful
key recovery was recorded after key sifting and key likeli-
hood estimation and shown in the Figure 5 for the various
ciphers considered.

As illustrated on Figure 5, key likelihood estimation
significantly improves key recovery success rate. Moreover,
key sifting does not converge to 1, which justifies the usage
of the key likelihood estimation step. The average number
of Hamming weight pairs needed to recover the correct key
with 99% confidence is 50 for LED, 250 for AES and 200
for SAFER++.

Simulations reveal that our attack can be used to recover
round keys. The total number of required faults, given in
Table II, depends on the cipher’s S-box input size, key
mixing operation and the number of elements in S-box. For
example, to recover all the sixteen AES key bytes, we would
need 480,000 faults.

IV. FEASIBILITY OF THE ATTACK

This section discusses practical aspects of the proposed
fault attack, namely multiple bit-set or bit-reset fault models,
precise fault injection time and the required number of faulty
ciphertexts.

1) Multiple bit-set or bit-reset fault model: One of the
attack’s main assumptions is that a multiple bit-reset (or
multiple bit-set) can be invoked by fault injection. Pre-
viously, these fault models have been applied by various
papers [12], [15]. The practical feasibility of bit-reset (or
bit-set) fault injection was shown in a set of experiments.
The multiple bit-set fault model was observed during EM-
glitch fault injection as described in [30]. [31] reports that
during laser fault injection to SRAM, bit-flip fault model is
irrelevant, only bit-set (or bit-reset) errors are feasible.

2) Precise fault injection time and space: A second attack
requirement is precise fault injection, i.e. the time and the
location of a fault must be well specified. This is a single
fault attack since only one fault has to be injected during
an encryption. The identification of fault injection time and
place can be done during the characterization phase when the
adversary has the full control over the device. To identify
the processing time of the state value XΩ

r,j an adversary
may use side-channel based reverse-engineering techniques
as shown in [14], [32], [33]. Once the time is identified
the adversary can search a location for EM or laser fault
injection. In order to speed up the identification phase the
number of cipher rounds can be reduced. Note that during
the characterization phase an adversary may have access to
the cipher’s input and output but during the evaluation this

100

Table I: Specification of operation (15) for different ciphers

Cipher Exact operation Size of XSP
r,j , XS

r+1,j ,
and Kr,j

Number of elements in
the S-box

LED XS
r+1,j = S

[
Kr,j ⊕XSP

r,j

]
4-bit 16

AES XS
r+1,j = S

[
Kr,j ⊕XSP

r,j

]
8-bit 256

SAFER++ XS
r+1,j = S

[
Kr,j +XSP

r,j

]
8-bit 256

Table II: Number of faults used to recover a key from operation (15) for different ciphers

Cipher Number of plaintexts Number of faults per
plaintext Total number of faults

LED 50 40 2,000

AES 250 120 30,000

SAFER++ 200 120 24,000

information is not accessible; hence, standard fault injection
or side-channel attacks cannot be applied.

3) The number of faults: Simulation shows that approxi-
mately 120 fault injections are needed before the Hamming
weights of the 8-bit input and output state values can be
identified. This number of faults has to be multiplied by the
number of plaintexts required to recover the key value, i.e.
the number of Hamming weight pairs needed for key byte
recovery. In total approximately 30,000 faults have to be
injected before the correct key byte value can be found for
the AES and 24,000 faults for SAFER++. This number of
faults is significantly higher than for other FAs. However,
our attack targets scenarios where other FA methods cannot
be applied. The number of faults seems a reasonable price
to pay. Once the time and location of fault injections are
identified, it is just a matter of time to create this number of
errors. In addition, our attack targets individual nibbles or
bytes depending the S-box sizes. After recovering several
bytes with our method, the rest of the key can be brute-
forced.

4) Countermeasures: Our attack is feasible against imple-
mentations where the number of different ciphertexts can be
counted but their values are inaccessible. The most straight-
forward countermeasures against the presented method are
based on randomization. Infective countermeasures that re-
place the ciphertext by a random number after a fault
recognition is one of them [34]. This countermeasure outputs
the correct ciphertext C if no fault happens and when a
fault is injected the output is masked with random data
C̆ = C ⊕ ((C ⊕ C̃) · η) where η is a random number.
With this countermeasure, for the same fault injected, there
are multiple different faulty ciphertexts and thus Hamming
weight computation cannot be applied.

Another type of countermeasures, which is often used to

defeat side channel analysis, is masking [35]. In this case, the
operation F = Sr+1,j ◦ A |Kr,j is changed to Fη = A |f(η)

S’r+1,j ◦A |Kr,j⊕η where η is the randomly generated mask,
S’ is the new layer computed as a function of the mask
and A |f(η) is the unmasking operation. However, the states
XSP,1
r,j and XS,1

r+1,j change masks for each encryption, thus
the Hamming weight can not be determined.

V. CONCLUSION AND FURTHER WORK

In this paper we have described a new fault attack on
SPN ciphers that has conservative preliminary assumptions.
Namely, the adversary:

• does not know plaintext and ciphertext values.
• can encrypt several times a set of unknown plaintexts.
• knows the number of different results of tampered

encryptions performed for the same plaintext.
• can induce a multiple bit-reset (or bit-set) fault in a

middle of a SPN round.

We show that under these assumptions the adversary can
derive the Hamming weight of an internal round state. When
a Hamming weight of the state before key mixing operation
and a Hamming weight of the state after confusion operation
are known the round key can be recovered. To the authors’
best knowledge this is the first fault attack that can be used
to derive any round key. Also this is the first attack that is
based on Hamming weight of the internal state values.

Simulations confirm that this attack works in practice
against AES, LED and SAFER++.

REFERENCES

[1] T. C. May and M. H. Woods, “Alpha-particle-induced soft
errors in dynamic memories,” Electron Devices, IEEE Trans-
actions on, vol. 26, no. 1, pp. 2–9, 1979.

101

[2] D. M. Fleetwood and R. D. Schrimpf, Radiation Effects and
Soft Errors in Integrated Circuits and Electronic Devices, ser.
Selected topics in electronics and systems. World Scientific
Pub., 2004.

[3] C. Gossett, B. Hughlock, and A. Johnston, “Laser simulation
of single-particle effects,” Nuclear Science, IEEE Transac-
tions on, vol. 39, no. 6, pp. 1647–1653, Dec 1992.

[4] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the im-
portance of checking cryptographic protocols for faults,”
in Advances in Cryptology EUROCRYPT 97, ser. LNCS,
W. Fumy, Ed. Springer Berlin Heidelberg, 1997, vol. 1233,
pp. 37–51.

[5] C. Giraud, “DFA on AES,” in Advanced Encryption Standard
AES, ser. LNCS, H. Dobbertin, V. Rijmen, and A. Sowa, Eds.
Springer Berlin Heidelberg, 2005, vol. 3373, pp. 27–41.

[6] D. R. Stinson, Cryptography: Theory and Practice, Third Edi-
tion, ser. Discrete Mathematics and Its Applications. Taylor
& Francis, 2005.

[7] J. Katz and Y. Lindell, Introduction to Modern
Cryptography: Principles and Protocols, ser. Chapman
& Hall/CRC Cryptography and Network Security
Series. Taylor & Francis, 2007. [Online]. Available:
http://books.google.ch/books?id=TTtVKHdOcDoC

[8] NIST, “Advanced encryption standard,” Federal Information
Processing Standard, FIPS-197, vol. 12, 2001.

[9] J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw, “The
led block cipher,” in Cryptographic Hardware and Embedded
Systems CHES 2011, ser. LNCS, B. Preneel and T. Takagi,
Eds. Springer Berlin Heidelberg, 2011, vol. 6917, pp. 326–
341.

[10] A. Bogdanov, L. Knudsen, G. Leander, C. Paar,
A. Poschmann, M. Robshaw, Y. Seurin, and C. Vikkelsoe,
“Present: An ultra-lightweight block cipher,” in
Cryptographic Hardware and Embedded Systems - CHES
2007, ser. LNCS, P. Paillier and I. Verbauwhede, Eds.
Springer Berlin Heidelberg, 2007, vol. 4727, pp. 450–466.

[11] Z. Gong, S. Nikova, and Y. Law, “KLEIN: A new family of
lightweight block ciphers,” in RFID. Security and Privacy,
ser. LNCS, A. Juels and C. Paar, Eds. Springer Berlin
Heidelberg, 2012, vol. 7055, pp. 1–18.

[12] J. Blömer and J.-P. Seifert, “Fault Based Cryptanalysis of
the Advanced Encryption Standard (AES),” in Financial
Cryptography, ser. LNCS, R. N. Wright, Ed. Springer Berlin
Heidelberg, 2003, vol. 2742, pp. 162–181.

[13] P. Dusart, G. Letourneux, and O. Vivolo, “Differential Fault
Analysis on A.E.S,” in Applied Cryptography and Network
Security, ser. LNCS, J. Zhou, M. Yung, and Y. Han, Eds.
Springer Berlin Heidelberg, 2003, vol. 2846, pp. 293–306.

[14] M. Joye and M. Tunstall, Eds., Fault Analysis in Cryptogra-
phy, ser. Information Security and Cryptography. Springer,
2012.

[15] T. Fuhr, E. Jaulmes, V. Lomn, and A. Thillard, “Fault Attacks
on AES with Faulty Ciphertexts Only,” in Fault Diagnosis
and Tolerance in Cryptography (FDTC), 2013 Workshop on,
W. Fischer and J.-M. Schmidt, Eds. IEEE Computer Society,
2013, pp. 108–118.

[16] L. Hemme, “A Differential Fault Attack Against Early
Rounds of (Triple-)DES,” in Cryptographic Hardware and
Embedded Systems - CHES 2004, ser. LNCS, M. Joye and
J.-J. Quisquater, Eds. Springer Berlin Heidelberg, 2004, vol.
3156, pp. 254–267.

[17] J. Blömer and V. Krummel, “Fault Based Collision Attacks
on AES,” in Fault Diagnosis and Tolerance in Cryptography,
ser. LNCS, L. Breveglieri, I. Koren, D. Naccache, and J.-P.
Seifert, Eds., vol. 4236. Springer Berlin Heidelberg, 2006,
pp. 106–120.

[18] V. Niemi and K. Nyberg, UMTS Security. Wiley, 2006.

[19] U. Maurer, “Abstract models of computation in cryptography,”
in Cryptography and Coding, ser. LNCS, N. P. Smart, Ed.
Springer Berlin Heidelberg, 2005, vol. 3796, pp. 1–12.

[20] J. Massey, G. Khachatrian, and M. Kuregian, “Nomination
of SAFER++ as Candidate Algorithm for the New European
Schemes for Signatures, Integrity, and Encryption (NESSIE),”
First Open NESSIE Workshop, 2000.

[21] J.-S. Coron, P. Kocher, and D. Naccache, “Statistics and
Secret Leakage,” in Financial Cryptography, ser. LNCS,
Y. Frankel, Ed. Springer Berlin Heidelberg, 2001, vol. 1962,
pp. 157–173.

[22] K. Sakiyama, Y. Li, M. Iwamoto, and K. Ohta, “Information-
theoretic approach to optimal differential fault analysis,”
Information Forensics and Security, IEEE Transactions on,
vol. 7, no. 1, pp. 109–120, 2012.

[23] R. Lashermes, G. Reymond, J.-M. Dutertre, J. Fournier,
B. Robisson, and A. Tria, “A DFA on AES based on the
Entropy of Error Distributions,” in Fault Diagnosis and Toler-
ance in Cryptography (FDTC), 2012 Workshop on, G. Bertoni
and B. Gierlichs, Eds. IEEE Computer Society, 2012, pp.
34–43.

[24] G. Piret and J.-J. Quisquater, “A Differential Fault Attack
Technique against SPN Structures, with Application to the
AES and Khazad,” in Cryptographic Hardware and Embed-
ded Systems - CHES 2003, ser. LNCS, C. D. Walter, e. K.
Ko, and C. Paar, Eds. Springer Berlin Heidelberg, 2003, vol.
2779, pp. 77–88.

[25] A. Moradi, M. Shalmani, Mohammad T., and M. Salma-
sizadeh, “A Generalized Method of Differential Fault Attack
Against AES Cryptosystem,” in Cryptographic Hardware and
Embedded Systems - CHES 2006, ser. LNCS, L. Goubin and
M. Matsui, Eds. Springer Berlin Heidelberg, 2006, vol. 4249,
pp. 91–100.

[26] D. Mukhopadhyay, “An Improved Fault Based Attack of the
Advanced Encryption Standard,” in Progress in Cryptology
AFRICACRYPT 2009, ser. LNCS, B. Preneel, Ed. Springer
Berlin Heidelberg, 2009, vol. 5580, pp. 421–434.

102

[27] W. Feller, An Introduction to Probability Theory and Its
Applications, 3rd ed. John Wiley & Sons, Inc., 1968, vol. 1.

[28] B. Harris, “Statistical inference in the classical occupancy
problem unbiased estimation of the number of classes,”
Journal of the American Statistical Association, pp. 837–847,
1968.

[29] J. Bunge and M. Fitzpatrick., “Estimating the number of
species: A review,” Journal of the American Statistical As-
sociation, vol. 88, no. 421, pp. 364–373, 1993.

[30] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and
E. Encrenaz, “Electromagnetic fault injection: towards a
fault model on a 32-bit microcontroller,” in Fault Diagnosis
and Tolerance in Cryptography (FDTC), 2013 Workshop on,
W. Fischer and J.-M. Schmidt, Eds. IEEE Computer Society,
2013, pp. 77–88.

[31] C. Roscian, A. Sarafianos, J.-M. Dutertre, and A. Tria, “Fault
model analysis of laser-induced faults in sram memory cells,”
in Fault Diagnosis and Tolerance in Cryptography (FDTC),
2013 Workshop on, W. Fischer and J.-M. Schmidt, Eds. IEEE
Computer Society, 2013, pp. 89–98.

[32] R. Novak, “Side-channel based reverse engineering of secret
algorithms,” in Proceedings of the Twelfth International Elec-
trotechnical and Computer Science Conference (ERK 2003),
Ljubljana, Slovenia, September. Citeseer, 2003, pp. 25–26.

[33] M. Goldack and I. C. Paar, “Side-channel based reverse
engineering for microcontrollers,” Master’s thesis, Ruhr-
Universität Bochum, Germany, 2008.

[34] V. Lomne, T. Roche, and A. Thillard, “On the Need of
Randomness in Fault Attack Countermeasures - Application
to AES,” in Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2012 Workshop on, G. Bertoni and B. Gierlichs, Eds.
IEEE Computer Society, 2012, pp. 85–94.

[35] H. Kim, S. Hong, and J. Lim, “A Fast and Provably Secure
Higher-Order Masking of AES S-Box,” in Cryptographic
Hardware and Embedded Systems CHES 2011, ser. LNCS,
B. Preneel and T. Takagi, Eds. Springer Berlin Heidelberg,
2011, vol. 6917, pp. 95–107.

103

